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Abstract

As the demand for higher performance computers for the processing of remote sensing science algorithms
increases, the need to investigate new computing paradigms is justified. Ileld Programmable Gate Arrays
enable the implementation of algorithms at the hardware gate level, leading to orders of magnitude performance
increase over microprocessor based systems. The automatic classification of spaceborne multispectral images
is an example of a computation intensive application that can benefit from implementation on an FPGA-
based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is
used here to classify pixels of a multispectral LANDSAT-2 image. The implementation described utilizes Java
client/server application prograins to access the adaptive computer from a remote site. Results verify that a
remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than
a local software version ol the same algorithm (implemented on a typical general-purpose computer).

[. INTRODUCTION

A new generation of satellites is being developed by the National Aeronautics and Space Admin-
istration (NASA) to compose the Earth Observing System (EOS). The instruments aboard the EOS
satellites not only extend the observation life of the current satellites. but they also extend the ca-
pabilities of remote sensing scientists to better understand the Earth’s environment. Along with the
scientific advancements of the new missions, it is also necessary to explore new technologies that fa-
cilitate and reduce the cost of the data analysis process. In order to process the high volume of data
generated by the new 1508 satellites, NASA is constructing the Distributed Active Archive Centers
(DAACS), an extensive and powerful parallel computing environment. Scientists will be able to request
certain data products from these centers for further analysis on their own computing systems. A new
technology that could hring increased processing power to the scientist’s desk, offering more complex
analysis and interpretation of remote sensed scientific data, is highly desirable. The ultimate scenario
would be for the scientist Lo request the data directly from the satellite along with historic data from
an archive center.

Field Programmable Gate Array (FPGA)-based computing, also known as "adaptive” or "reconfig-
urable computing”, has emerged as a viable computing option in computationally intensive applica-
tions. These computing systems combine the flexibility of general purpose processors with the speed of
application specific processors. By mapping hardware to FPGAs, the computer designer can optimize
the hardware for a specilic application resulting in acceleration rates of several orders of magnitude
over general purpose computers. Because the FPGAs are personalized using SRAM-based memory
cells or a fuse programming technology, they can be reconfigured by the designer for other applications.

Several reconfigurable computers have been implemented to demonstrate the viability of reconfig-
urable processors [1], [2]. [3]. [4]. Applications mapped to these processors include: pattern recognition
in high-energy physics [5]. applications in statistical physics[6], and genetic optimization algorithms

(7], [8]. In many cases [9]. [10]. [11], the reconfigurable computing implementation provided the highest
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performance, in terms ol execution speed. The advent of reconfigurahle processors along with novel
methods for mapping applications onto adaptive or reconfigurable processors enables a new comput-
ing paradigm that may represent the future for remote sensing scientific data processing. In fact,
many applications utilizing FPGA based computers have been developed showing orders of magnitude
acceleration over microprocessor based systems [12],[13].[11]. Morcover. microprocessors and FPGAs
share the same underlying techuology - the silicon fabrication process. Therefore, it is reasonable to
conclude that FPGA bascd machines can nsually outperform microprocessor hased systems by orders
of magnitude [15], [16],[17].

To achieve such performance, the application must effectively utilize the available resources. This
presents a challenge for software designers, who are generally accustomed to mapping applications
onto fixed computing systems. Generally, the designers examine the available hardware resources, then
modify their application accordingly. With reconfigurable computers, the available resources can be
generated as needed. While it may seem that this flexibility would case the inapping process, it actually
introduces new problenis. s1ch as what components should be used, and how many of each component
should be used to generate the best performance. With conventional hardware components, these
questions are less of an issue. In addition, software engineers are generally not adept at hardware design.
Thus, several research groups have developed methods lor mapping applications to reconfigurable
processors (2], [18], [19]. [20], {21].

The Adaptive Scientific Data Processing (ASDP) group at. NASA’s Goddard Space Flight Center
(GSFC), in conjunction with researchers at North Carolina State University, have been investigating
the utilization of FPG.A-based computing in the processing of remote sensing scientific algorithms.
The first prototype devcloped by the group utilized a comnercial-ofl-the-shelf (COTS) reconfigurable
accelerator in the implementation of an automatic classifier for the LANDSAT-2 multispectral images
[22]. The implementation discussed in this paper is an extension of the original prototype that allows
users to classify the images on the accelerator from a remote site. Results indicate that a remote im-
plementation of the classiflicr in adaptive computing hardware is faster than a software implementation
that executes on a local high-end workstation.

This paper presents dctails of the FPGA design and is organized as follows. Section 2 describes
the classifier algorithm that utilizes a probabilistic neural network (’NN). The implementation of the
FPGA custom computing machine is then presented. Iinally, a performance analysis of local and

remote versions of the algorithi is presented.



II. Tor, PNN MULTISPECTRAL IMAGL CLASSIFIER

Remote sensing satellites utilize multispectral scanners to colleet information about the Earth’s
environment [23]. The data collected by such instruments are a set of images, each corresponding to
one spectral band. A multispectral image pixel is represented by a vector of size equal to the number
of bands. The combination of the multiple spectrum measurements represented by cach element
of the pixel vector detceriine a signature that corresponds to a physical object being viewed by the
satellite. Through the ohscrvation of a multispectral image and the comparison of pixel vectors to those
obtained from known locations (in-situ measurements), a scicntist is able to identify unique signatures
of physical objects and compose classes. These classes contain multispectral pixel representations of
physical objects on the carth that are closely related. Ixample classes include forest, tundra, wetland,
water, etc.

Several neural network schemes have been devised for the antomatic classification of multispectral
images [24]. One in particular. the Probabilistic Neural Network (PNN) classifier [25]. exhibits ac-
ceptable accuracy, very small training time, robustness to weight changes, and negligible retraining
time. A description of the derivation of the PNN classifier and details of the network implementa-
tion including rate of false alarnis. neural network size, ete. are presented in Chettri et. al. [25]. The
Blackhills (South Dakota. USA) data set was generated by the Landsat 2 multispectral scanner (MSS).
The image’s four spectral bands (0.5-0.6 gm, 0.6-0.7 gan, 0.7-0.8 ynn, and 0.8-1.1 o) correspond to
channels 4 through 7 of the Landsat MSS sensor. There are 262,144 pixels corresponding to a 512x512
pixel image size, and each pixel represents a 76m x 76m ground arca: the images were obtained in
1973. The ground truth was provided by the United States Geological Survey.

Figure 1 illustrates the PNN classifier procedure. Each multispectral pixel, represented by a vector,
is compared to a set of pixels helonging to a class. A probability valne is calenlated for cach class.
The highest value indicates the class into which the pixel fits. 1. 1 is nsed to derive a value that

indicates the probability that the pixel fits into class Si.
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where ()2 is a pixel vector, /W* is the weight ¢ of class k. d is the number of bands, k is the number

of classes, P, is the number of weights per class, and N1[k], K2[k] are constants.)



ITI. THE FPGA IMPLEMENTATION

The first step in implementing an application on an adaptive computer is to select the FPGA-based
custom coprocessor architecture that best matches the algorithm in question. At the current state of
the technology, certain I'’GA architectures provide hetter performance than others for a particular
class of applications. A preliminary analysis of the PNN classifier indicated that the FPGA architecture
[26], shown in Figure 2, matched well with the algorithin. The selected 'PGA architecture is composed
of a PCI bus based motherboard and up to 16 plug-in modules. These plug-in modules cach contain
two Xilinx 4013E FPGA devices(XFPGA and YFPGA) and provide an equivalent of 13,000 gates
per FPGA, or 26,000 gates per module. The design implementation required approximately 1160
CLBs (85% utilization) per I'PGA. Since the module contained two I'PGAs and two separate memory

modules (connected via the [[BUS), we can perform two lookup table (LUT) operations simultaneously.

A. Algorithm partitioning

The computation intensive portion of the multispectiral image classilication algorithm fonnd in Eq. 1
was identified by profiling an imiplementation of the algorithim that was written using the C' program-
ming language. This computation was selected to be excented on the 'PGA coprocessor to improve
performance for the complete classification algorithm. The graphical user interface, data storage,
adaptive coprocessor initialization code, algorithm synchronization, and data 1/0 is performed by the
host processor. The compute intensive PNN classification algorithm equations were mapped onto a
single module.

Figure 3 illustrates the algorithm partitioning. The host processor displays the image during classi-
fication. The host then scnds a pixel vector to the FPPGA coprocessor. Classification is performed on
the coprocessor and resnlts are returned to the host to be displayed. The host also computes the total
time required to process a complete image. If we wish to use multiple modules as coprocessors, the
host schedules a pixel vector to be processed on each module in a round-robin fashion. then gathers

the results as they become available.

B. FPGA application design

Due to the limited number of gates available on a single FPPGA, it was not feasible to use floating
point arithmetic in our implementation of the PNN algoritlhin, We therelore transformed the algorithm
to use fixed point arithimetic prior to hardware implementation. The width of the fixed point datapath

was determined by simulating variable bit operations in (' and comparing the results obtained from
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the original algorithm in floating point. Once the fixed point classilication of the Blackhills data
set yielded exactly the same results as the floating point version, the data path width for the FPGA
implementation was known. (Since the output of the PNXN classifier is simply a 4-bit value representing
the class that matches the pixel, the fixed point version produced exactly the same result as the floating
point version. Hence there is no loss in precision due to implementation using fixed point arithmetic.)

Figure 4 shows the data flow diagram for the hardware implementation of the PNN classifier. A
portion of the design was mapped onto the XFPGA and the remaining blocks were implemented on the
YFPGA of the module. The number of bands (d) was fixed to 4, the maximum value of the number
of weights per class () was fixed to 512, and the maxinmum number of classes (4) was set to 16. As
shown in Eq 1, there arc two constants, K1 and A2, that are class dependent. These constants are
pre-calculated on the host and downloaded to memory banks residing on the modules.

The weight memory was mapped to the SRAM that is connected to the YFPGA on the module. The
weight memory can be as large as 16*512%4*2 bytes = 32763 16-bit. words. lach weight value occupies
10-bits. Since each class can have up to 512 weights, an array that holds the number of weights for
each class is employed. The inpnts of the array are also visible from the host processor.

A 4-bit register holds the number of classes. This register is initialized by the host hefore loading the
FPGA coprocessors. Due to the lack of space on the XI'PGAL the A1 nmnltiplier and the class compar-
ison blocks were moved to the host. These calculations amount to & multiplications and comparisons
per pixel classification. Since the number of classes, k. is small, they do not acconnt for a significant
amount of the computation, leading to a small performance penalty. For example. if the number of
classes k = 16, the maximum nmber of weights per class % = 512, and we are classifving a 512x512
image with d = 4 spectral bands, 15¢q. 1 is calculated 16 times. The performance penalty amounts to
only 16 multiplications and 16 comparisons per 512x512 image that are executed on the host rather
than executed on the I'’GA. This is a small overhead relative to the more than 512 multiplications
that are computed on the I'PGA for this example.

Figure 4 contains a Subtraction Unit that computes W, a | x 10-hit clement vector for W (weq, wy, we, w3)
minus X (zo, z1, 22, 23). The result of the subtraction ranges from -1023 to 1023, requiring 11 bits in
two’s complement format. The Square Unit multiplies cach 11-bit clement of the Y vector by itself
(i.e. to = yo X yo). The valnes of the elements of the 1" vector range from 0 to 1,016,529, requiring 20
bits in two’s complement. format.

The next computation involves the Band Accumulator Unit. This unit adds the 4 elements of the

T vector together resulting in n. ranging in value from 0 to 186,116, vequiring 22 bits. The K2[k]



Memory holds the K2 values for cach class. K2 = (1/2)7, 2, where 7, = 2,3,.. ., 11,12, As a result,
K2 varies between 0.125 (7, = 2), and 0.003472 (a4 = 12). The largest value of A2 = 0.125 in decimal
and is represented exactly in binary (0.001). In order to increase the precision of the multiplication,
the values of K2 are stored with the decimal point shilted to the right by 2 (multiplied by four). After
K2 is multiplied by u in the A2 Multiplier Unit, the decimal point of the result of the multiplication is
shifted to the left by 2 (divide by 1 effect). Since this is a representation issue, no hardware is necessary
to perform the shifts in the YFPGA (refer to Figure 4), only the host needs to maintain the values in
the K2[k] memory in the appropriate format. The A2 Multiplier Unit multiplies the A2 values for
each class by the accumulated values of the difference between a pixel and a weight vector. It delivers
a 44-bit result to the TO_XEFPGA unit shown in Figure 1. Bits 0 to 23 represent the fraction portion
(remember that the decimal point is shifted to the left by 2), and bits 24 to 43 represent the integer
part of the result.

The next operation is to compute the exponential of the negative of this number. Given the precision
of the following operations, any number above 24 will yicld zero as a result. Thus, if any of bits 43 to
29 is set or both bits 28 and 27 are set, the result of « =" should be zero. Only 28 bits are passed on
to the Exponential LUT" Unit, and they are bits 1 to 28. Bit 0 and bits 29 to 43 arve discarded. It was
also found that a considerable mumnber of results of the mnltiplication are zero, which indicates that
the result of the exponential shonld be one. In order to save processing steps in this case. the output
of the multiplier is tested for zero. and a flag is passed to the Exponential LUT Unit. indicating that
its result should be 1.

A look-up table is uscd to determine the value of ¢ 7%, If we assume that « = 6 ¢, then:

€70 = g lbr) o =P (2)

Since a is a 28-bit binary number, the value comprising bits 27 to 11 of ¢ represent b, and the value

comprising bits 13 to 0 of « represent e. The range of values of b and ™" are:

00000.000000000 < b < LOTILILLIITITL. (3)
or
0 < b < 23.9980469, (4)
which results in
0.9980519 > €7 > 3.78 « 107" (5)
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The range of values of ¢ and ™" are:
00000.00000060000000000000001 < ¢ < 00000.0060000001TTITTITITTEIL, (6)

or

119 x 1077 < e < 1.N919 x 107 (7)

which results in

0.999999881 > ¢~ > 0993 10US8S (8)

The values of e=® and ¢ are previously calculated and organized into a look-up table. At run
time, the values of b and ¢ arc nsed to address the look-np table stored in the memory that is directly
connected to the XFPGA. The valnes of e7® and ¢ ¢ retrieved from the look-up table are then multiplied

)

to give the value of ¢=". The values stored in the Jook-np table ave 32-hits wide. The result of the

multiplication is 64-bits. but only the most significant 32 hits are sent out. As a result,
377 x 1071 < e < 0.998051781. (9)

The Class Accumulator Unit sims up all the comparisons between a given pixel and all weights of
a given class, and outpnts the result when it receives a flag indicating that the data to add to the
accumulator refers to the last weight in a class. The output of the Exponential Multiplier Unit range
is 3.77.107" < d < 0.998051781. Thus, the largest accindated vahie is 0.998051781 * 512 (max. of
weights) = 511.002511872. In order to keep the precision of d, the accumulator is extended to 40 bits
to accommodate the original 31 hits after the decimal point and 1 hit before the decimal point, and
the new 8 bits before the decimal point. Each class has a A1 valne associated with it. The value of

K1 is determined by the following formula:

]
1, = — 1
(1 ST (10)

The result of the multiplication of &1 by the accumulated differences hetween a pixel and all weights
in a given class is compared with all other classes to determine the largest result. which indicates in
which class a pixel most probably helongs. In order to keep the values heing multiplied in the same
range allowing us to use lixed point arithmetic, the vahies of Kl are normalized as follows: Given d,
oy and Py, the host program calculates all K1 values, and divides them by the largest one. The result

is that one value of K1 cquals | and all the others are less than 1. T'he ATl Multiplier Unit multiplies
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the 40-bit result of the ('lass Accumulator Unit by the 32-bit K1 value from the A1 Memory Unit,
and outputs a 40-bit result to the ¢ register in the Class Comparison Unit. The Class Comparison
Unit receives a value that represents the comparison hetween a pixel and all weiphts in a class, and
compares this value against the valnes generated for all other classes. At the end of the calculation
of all classes, it outputs a code that represents the class which presented the largest value or is the

closest match.

C. The host software

The software that was developed for the PNN algorithm that exceutes on the host processor was
written in the Java programming language. We selected the Java programming language for several
reasons. Java supports soltware rense, native methods, remote method invocation. and it has a built-in
security manager. Software rense allows Java objects and methods to be nsed repeatedly in different
applications. Native methods allow legacy code (old soltware written in another language) to be called
directly from Java methods. The security manager and remote method invocation allow Java programs
to be executed on remote (!I’Us with the system taking care of network traflic crrors, security, etc.
The FPGA system used for development of the hardware modules, contains drivers for interfacing to
the FPGA devices that arc only available in the C progranuning language. Java, was a nseful choice
for a programming language since native methods allow one to call €' rontines divectly from Java. This
is accomplished by building a dynamic link library that contains the (" functions that interface to the
FPGA coprocessors. A Java native method is used to call these Of funetions divectly.

The application was implemented using a client/server methodology to provide an interface to the
FPGA coprocessors from a remote site. The server program interfaces divectly to the reconfigurable
accelerator via the C drivers. It receives a block of pixels [rom the elient. initiates the classification
of each of the pixels on the I'PGA accelerator, gathers the resnlts into a block of classified data,
and sends the results back to the client. The client software controls the user interface. image data
input/output and translation, in addition to communication with the server. By selecting Java as
a programming language and scparating the program into client and server subsystens, the client
software is completely independent of the operating systen that will excente the elient program. Only
the server contains code that is not only dependent on the operating svstem used, hut also depends on
the specific reconfigurable accelerator that has been selected. Henceo in this paper we present results
obtained from an implementation of the PNN algorithm that can he exeented from a remote machine

accessible, for example. on the Interet.



IV, EXPERIMENTATL RESULTS

In our experiments, we used the remote implementation of the PNN classifier to measnre the effec-
tiveness of a client/server approach to adaptive computing. Iligure 5 illustrates a potential scenario
for remote image classilication. In this configuration. the server program has a direet interface to the
FPGA coprocessor. It initializes the FPGA board and loads the architecture shown in Figure 4 into
the programmable hardware. T our project, the server excentes on aworkstation at NASA. The client
program communicates with the server via the Internet. The client requests a connection with the
server and, once granted, sends dala to the server for processing. The server processes the data and
sends the results back to the client for display. While the client is designed to execute at a remote site,
e.g. NCSU, in our experiments. hoth the client and server programs were executed on a single host at
NASA.

Two software implenicutations of the PNN algorithm were developed to compare the relative perfor-
mance of implementations in two different programming languages. One version was written entirely
in the Java programming language. The other version was written using the C programming language.
The main routine in the client spawned either the Java or (! versions of the algorithm via a call from
a normal or native method respectively.

Two FPGA-based hardware versions of the PNN aleorithi were implemented nsing single or mul-
tiple modules. We report resnlts nsing two modules as we only had two modules available for our
experiments. In the single module case, one pixel or one block of pixels were sent to cach FPGA
coprocessor and the results were retnrned to the client via the server. In the two module experiments,
one pixel or one block was sent to each of the two FI'GGA coprocessors in an attemp: to speedup
algorithm execution by a lactor of 2. Each module in the multiple modnle case contained a complete
implementation of the hardware in IMigure 4.

A traditional version ol the PNN (lassifier algorithin was previonsly developed as the basis for
the remote version presented in this paper. This experiment demonstrates the potential merits of a
remote image classification algorithin implementation. The traditional version execnted on a 100 MHz
Pentium PC. This implementation, written entirely in €', required 2013 C'PU scconds to classify the
complete Blackhills data set. By augmenting the PC with a single modide running the PNN classifier
at 16 MHz, the processing time was reduced to 220 CPU scconds. In this case, the adaptive computing
implementation is 9.29 times laster than the software version. Adding one additional module improved
execution time to 90 C'P17 seconds,

In our experiments with the remote PNN classifier. we ran a total of | different scenarios presented
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in Figure 6. The scenarios allow s to compare local and remote versions of the algorithm that execute
on the client and server with pixel-based or block-hased algorithms where one pixel ar one block of
pixels is processed. In cach experiment, we present execution times for two software implementations
(written in Java and C') and two hardware implementations (one module or two modulesy.

In Table I, we present results of a remote implementation of the image classification algorithm where
one pixel is processed al a time. Note that the implementation of the algorithim in Java requires
7598 CPU seconds to complete. The (! version ol the algorithm requires slightly more time since it is
actually spawned from the local client Java program to execnte on the remote server workstation. (The
overhead associated with calling a (! function from Java is included in the exeention time.) For all
practical purposes, the (! and Java versions of the algorithm require approximately the samme execution
time. This was a strange result since Java is an interpreted language, however, we noticed a drastic
improvement in the exceution ol Java programs using more recent versions ol the Java interpreter.
The remote version of the algorithim executing on a single FPGA modnle was 3.57 times faster than
the remote software version. Also note that the addition ol one module in the multiple module case
does not impact performance.

The next experiment involved sending a block of data from the client to the server for processing. The
results of this experiment arce also shown in Table I In onr experiments, an arbitrary block size (equal
to 6 rows) was selected. (I'ntnre experiments will identily the optimal block size.) Since there are 512
pixel vectors in a row, and 1 pixels per vector, one block contains 12,223 pixels. Note that the execution
time of the remote Java version of the block-based algorithm is significantly smaller than the pixel-
based algorithm. The cxccution time reduced from 7393 to 1358 CPU seconds. Once again, the single
module implementation was significantly (7.6 times) faster than the remote software version written in
Java. The addition of a sccond module did not provide a speedup die to the overlicad associated with
sending a block of data to the server. Please note that the 'PGA coprocessor consiztently processes
a pixel at a time, however. the server will wait for all pixels in a block 1o he processed betore sending
the results back to the client.

Table II presents results of PNN classification excenting on a local workstation. The clicnt program
can initiate execution of cither of the software or hardware algorithm implementations. In the local
pixel-based algorithm, the Java version requires ahout 1317 CPU sceonds and the single module
implementation requires 111 ('PU scconds. This is approximately an order of magnitude improvement
in execution time. The mnltiple module version completes in 77 seconds resnltine in a 2:1 speedup

over the single module as expected. The results [rom Table T illustrate that hlock-hased processing is
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counterproductive on a local client workstation.

V. CONCLUSIONS

In this paper, it was shown that the implementation of a ninltispectral image classifier on an adaptive
computer yields an order of magnitude performance inerease over high end workstations. If we extract
the fastest execution times for the algorithm from the Tahles presented. we find an interesting result
that relates to the potential impact of remote adaptive compnting technology. The fastest remote
hardware implementation of the PNN algorithm consisted of a single module requiring 178 CPU
seconds to complete. On the other hand, the fastest local software version of the algorithi was the
Java version that required 1309 (‘P17 seconds. This is 7.35 times slower than the remote hardware
implementation. Hence. for image classification. a remote hardware implementation of the algorithm
is faster than a local software implementation of the algorithm. Future work is to identity additional
applications wherein a rcmote hardware implementation is consistently faster than a local software
version. Additionally experiments that quantify the effects of a heavily loaded network connection

should be conducted.
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TABLE |

CONDS}.

Pixel Based

Block Based

Description Avg Row | Total | Avg Row | Total
Software (Java) 14.83 7597.79 2.65 135801
SOftWﬁl‘e (C) 15.79 80872 1 3.61 15 ] 100 }

Hardware (Single)

406 2125338

0.35

Hardware (Multiple)

4.25 4J 2156.02

0.35

17, 2T
[ 180.15

TABLE 1L

LocaL IMAGE CLASSIFICATION ‘I'IMING REPORT (Ix CPU sECONDS).

Pixel Based

Block Based

Description Avg Row } Total | Avg Row Total
Software (Java) 250 131731 256 1309.0.5
Software (C) 357 187136 [ 369 1889, 3
Hardware (Single) 027 | 1110 0.28 113,05
Hardware (Multiple) 0.1 TS 028 | 11257
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